首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Sequence dependence in base flipping: experimental and computational studies
Authors:O'Neil Lauren L  Wiest Olaf
Institution:Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, 46556-5670, USA.
Abstract:Base flipping is the movement of a DNA base from an intrahelical, base-stacked position to an extrahelical, solvent-exposed position. As there are favorable interactions for an intrahelical base, both hydrogen bonding and base stacking, base flipping is expected to be energetically prohibitive for an undamaged DNA duplex. For damaged DNA bases, however, the energetic cost of base flipping may be considerably lower. Using a selective, non-covalent assay for base flipping, the sequence dependence of base flipping in DNA sequences containing an abasic site has been studied. The dissociation constants of the zinc-cyclen complex to small molecules and single strands of DNA as well as the equilibrium constants for base flipping have been determined for these sequences. Molecular dynamics simulations of the zinc-cyclen complex bound to both single- and double-stranded DNA have been performed in an attempt to rationalize the differences in the dissociation constants obtained for the two systems. The results are compared to previous studies of base flipping in DNA containing an abasic site.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号