首页 | 本学科首页   官方微博 | 高级检索  
     检索      


<Emphasis Type="Italic">k</Emphasis>-Trails: recognition,complexity, and approximations
Authors:Mohit Singh  Rico Zenklusen
Institution:1.Microsoft Research,Redmond,USA;2.ETH Zurich,Zurich,Switzerland
Abstract:The notion of degree-constrained spanning hierarchies, also called k-trails, was recently introduced in the context of network routing problems. They describe graphs that are homomorphic images of connected graphs of degree at most k. First results highlight several interesting advantages of k-trails compared to previous routing approaches. However, so far, only little is known regarding computational aspects of k-trails. In this work we aim to fill this gap by presenting how k-trails can be analyzed using techniques from algorithmic matroid theory. Exploiting this connection, we resolve several open questions about k-trails. In particular, we show that one can recognize efficiently whether a graph is a k-trail, and every graph containing a k-trail is a \((k+1)\)-trail. Moreover, further leveraging the connection to matroids, we consider the problem of finding a minimum weight k-trail contained in a graph G. We show that one can efficiently find a \((2k-1)\)-trail contained in G whose weight is no more than the cheapest k-trail contained in G, even when allowing negative weights. The above results settle several open questions raised by Molnár, Newman, and Seb?.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号