Density functional study of the mechanism of the Beckmann rearrangement catalyzed by H-ZSM-5: a cluster and embedded cluster study |
| |
Authors: | Sirijaraensre Jakkapan Truong Thanh N Limtrakul Jumras |
| |
Affiliation: | Computational and Applied Chemistry Laboratory, Physical Chemistry Division, Kasetsart University, Bangkok 10900, Thailand. |
| |
Abstract: | The mechanism of the Beckmann rearrangement (BR) catalyzed by the ZSM-5 zeolite has been investigated by both the quantum cluster and embedded cluster approaches at the B3LYP level of theory using the 6-31G(d,p) basis set. Single-point calculations were carried out at the MP2/6-311G(d,p) level of theory to improve energetic properties. The embedded cluster model suggests that the initial step of the Beckmann rearrangement is not the O-protonated oxime but the N-protonated oxime. The energy barriers derived from the proton shuttle of the N-bound to the O-bound isomer are determined to be approximately 99 and approximately 40 kJ/mol for the embedded cluster and quantum cluster approaches, respectively. The difference in the activation energy is due mainly to the effect of the Madelung potential from the zeolite framework. The next step is the rearrangement step, which is the transformation of the O-protonated oxime to be an enol-formed amide compound, formimidic acid. The activation energy, at the rearrangement step, is calculated to be approximately 125 and approximately 270 kJ/mol for the embedded cluster and quantum cluster approaches, respectively. The final step is the tautomerization step which transforms the enol-form to the keto-form, formamide compound. The energy barrier for tautomerization is calculated to be 123 and 151 kJ/mol for the embedded cluster and quantum cluster approaches, respectively. These calculated results suggest that the rate-determining step of the vapor phase of the Beckmann rearrangement on H-ZSM-5 is the rearrangement or tautomerization step. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|