首页 | 本学科首页   官方微博 | 高级检索  
     

多元醇对对苯二异氰酸酯基聚氨酯微孔弹性体的形态与性能影响
引用本文:郇彦,李肖肖,田雨濛,王杰,杨小牛. 多元醇对对苯二异氰酸酯基聚氨酯微孔弹性体的形态与性能影响[J]. 应用化学, 2017, 34(10): 1110-1116. DOI: 10.11944/j.issn.1000-0518.2017.10.170231
作者姓名:郇彦  李肖肖  田雨濛  王杰  杨小牛
作者单位:中国科学院长春应用化学研究所,高分子复合材料工程实验室 长春 130022;中国科学院大学 北京 100049;中国科学院长春应用化学研究所,高分子物理与化学国家重点实验室 长春 130022;中国科学技术大学 合肥 230026
基金项目:吉林省重点科技攻关项目资助(20160204031GX)
摘    要:以对苯二异氰酸酯(PPDI)、1,4-丁二醇、水、聚四氢呋喃醚多元醇(PTMEG)和氢化端羟基丁二烯多元醇(HLBH)为原料,采用两步法制备出聚氨酯微孔弹性体样品。通过傅里叶变换衰减全反射红外光谱(FTIR-ATR)、动态机械分析(DMA)、差示扫描量热仪(DSC)、万能材料试验机等技术手段对样品的微相分离、耐低温性能、动态生热进行了系统表征。结果表明,两种多元醇结构对泡孔尺寸影响不大,微孔尺寸在100~300μm之间,其中以150μm尺寸左右的泡孔居多;HLBH制备的聚氨酯微孔弹性体硬段形成的氢键数量多于PTMEG制备的微孔弹性体,具有更好的微相分离;由于较好的微相分离结构,HLBH样品在-30~150℃具有很宽的模量平台区,而PTMEG样品受软段的低温结晶影响,在0℃以下模量急剧上升,HLBH样品低温下的刚度变化优于PTMEG样品;同时HLBH样品的滞后生热亦小于PTMEG样品,具有更好的动态疲劳性能。

关 键 词:聚氨酯材料  聚氨酯微孔弹性体  微相分离  低温  对苯二异氰酸酯  
收稿时间:2017-06-27

Effect of Polyols on the Morphology and Properties of 1,4-Phenylene Diisocyanate-Based Microcellular Polyurethane Elastomers
HUAN Yan,LI Xiaoxiao,TIAN Yumeng,WANG Jie,YANG Xiaoniu. Effect of Polyols on the Morphology and Properties of 1,4-Phenylene Diisocyanate-Based Microcellular Polyurethane Elastomers[J]. Chinese Journal of Applied Chemistry, 2017, 34(10): 1110-1116. DOI: 10.11944/j.issn.1000-0518.2017.10.170231
Authors:HUAN Yan  LI Xiaoxiao  TIAN Yumeng  WANG Jie  YANG Xiaoniu
Affiliation:Polymer Composites Engineering Laboratory,Changchun Institute of Applied Chemistry Chinese Academy of Sciences,Changchun 130022,China;University of Chinese Academy of Sciences,Beijing 100049,China;State Key Laboratory of Polymer Physics and Chemistry,Changchun Institute of Applied Chemistry Chinese Academy of Sciences,Changchun 130022,China;University of Science and Technology of China,Hefei 230026,China
Abstract:Microcellular polyurethane elastomers were obtained by a two-step polymerization using 1,4-phenylene diisocyanate(PPDI), 1,4-butanediol(BDO), water, polyethylene tetrahydrofuran ether polyol(PTMEG) and hydrogenated hydroxyl-terminated butadiene polyols(HLBH) as raw materials. Fourier reflection infrared(FTIR-ATR), dynamic mechanical analysis(DMA), differential scanning calorimetry(DSC), universal material testing machine, dynamic fatigue testing machine were used to systematically characterize the microphase separation, low temperature resistance, dynamic heat build-up of the samples. The results show that the microcellular size of the specimens based on two polyols is 100~300 μm wherein the 150 μm is the majority, indicating that the structure of polyols has little influence on the microcellular size. Due to more H-bonds between hard segments, HLBH-based microcellular polyurethane elastomers show better microphase separation than that of PTMEG. There is a wide modulus platform region at -30~150 ℃ in the modulus-temperature curve for HLBH-based specimens due to its proper microphase separation structure. However, due to the crystallization of the soft segments at low temperature, the modulus of PTMEG-based specimens increases dramatically under 0 ℃. The stiffness of HLBH-based specimens surpasses that of PTMEG-based specimens at low temperature, and the hysteresis heat production of HLBH-based specimens is less than that of PTMEG-based specimens. Therefore, the former shows better dynamic fatigue performance.
Keywords:polyurethane material  microcellular polyurethane elastomer  microphase separation  low temperature  phenylene diisocyanate
本文献已被 CNKI 等数据库收录!
点击此处可从《应用化学》浏览原始摘要信息
点击此处可从《应用化学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号