首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Multiplicity of periodic solutions to symmetric delay differential equations
Authors:Wieslaw Krawcewicz  Jianshe Yu  Huafeng Xiao
Institution:1. Department of Mathematical Sciences, The University of Texas at Dallas, Richardson, TX, 75080-3021, USA
2. College of Mathematics and Information Sciences, Guangzhou University, Guangzhou, 510006, China
Abstract:By applying the method based on the usage of the equivariant gradient degree introduced by G?ba (1997) and the cohomological equivariant Conley index introduced by Izydorek (2001), we establish an abstract result for G-invariant strongly indefinite asymptotically linear functionals showing that the equivariant invariant ${\omega(\nabla \Phi)}$ , expressed as that difference of the G-gradient degrees at infinity and zero, contains rich numerical information indicating the existence of multiple critical points of ${\Phi}$ exhibiting various symmetric properties. The obtained results are applied to investigate an asymptotically linear delay differential equation $$x\prime = - \nabla f \big ({x \big (t - \frac{\pi}{2} \big )} \big ), \quad x \in V \qquad \quad (*)$$ (here ${f : V \rightarrow \mathbb{R}}$ is a continuously differentiable function satisfying additional assumptions) with Γ-symmetries (where Γ is a finite group) using a variational method introduced by Guo and Yu (2005). The equivariant invariant ${\omega(\nabla \Phi) = n_{1}({\bf H}_{1}) + n_{2}({\bf H}_{2}) + \cdots + n_{m}({\bf H}_{m})}$ in the case n k ≠ 0 (for maximal twisted orbit types (H k )) guarantees the existence of at least |n k | different G-orbits of periodic solutions with symmetries at least (H k). This result generalizes the result by Guo and Yu (2005) obtained in the case without symmetries. The existence of large number of nonconstant periodic solutions for (*) (classified according to their symmetric properties) is established for several groups Γ, with the exact value of ${\omega(\,\nabla \Phi)}$ evaluated.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号