首页 | 本学科首页   官方微博 | 高级检索  
     


Computer modeling of MWIR single heterojunction photodetector based on mercury cadmium telluride
Authors:P.K. Saxena  P. Chakrabarti
Affiliation:aSMS Institute of Technology, U. P. Technical University, Lucknow-227 125, India;bCentre for Research in Microelectronics, Department of Electronics Engineering, Banaras Hindu University, Varanasi 221 005, India
Abstract:In the present paper, an abrupt heterojunction photodetector based on Hg1 − xCdxTe (MCT) has been simulated theoretically for mid-infrared applications. A semi-analytical simulation of the device has been carried out in order to study the performance ratings of the photodetector for operation at room temperature. The energy band diagram, carrier concentration, electric field profile, dark current, resistance–area product, quantum efficiency and detectivity have been calculated and optimized as a function of different parameters such as device thickness, applied reverse voltage and operating wavelength. The effect of energy band offsets in conduction and valance band on the transportation of minority carriers has been studied. The influences of doping concentration, electron affinity gradient and the pn junction position within heterostructure on potential barrier have been analyzed. The optical characterization has been carried out in respect of quantum efficiency, and detectivity of the heterojunction photodetector. In present model the Johnson–Nyquist and shot noise has been considered in calculation of detectivity. The simulated results has been compared and contrasted with the available experimental results. Results of our analytical-cum-simulation study reveal that under suitable biasing condition, the photodetector offers a dark current, ID ≈ 6.5 × 10−12 A, a zero-bias resistance–area product, R0A ≈ 11.3 Ω m2, quantum efficiency, η ≈ 78%, NEP = 2 × 10−12 W Hz1/2 and detectivity D* ≈ 4.7 × 1010 mHz1/2/W.
Keywords:ATLAS   MWIR   Heterojunction   Photodetector   HgCdTe-MCT
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号