首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Creation of very-low-Reynolds-number chaotic fluid motions in microchannels using viscoelastic surfactant solution
Authors:Feng-Chen Li  Haruyuki Kinoshita  Xiao-Bin Li  Masamichi Oishi  Teruo Fujii  Marie Oshima
Institution:1. School of Energy Science and Engineering, Harbin Institute of Technology, West Dazhi Street 92, Harbin 150001, China;2. Institute of Industrial Science, The University of Tokyo, Komaba 4-6-1, Meguro-Ku, Tokyo 153-8505, Japan
Abstract:Solutions of flexible high-molecular-weight polymers or some kinds of surfactant are viscoelastic fluids. The elastic stress is induced in such viscoelastic fluid flows and grows nonlinearly with the flow-rate resulting in many particular flow phenomena, including purely elastic instability. The purely elastic instability can even result in a kind of chaotic fluid motion, the so-called elastic turbulence, which is a recently discovered flow phenomenon and arises at arbitrarily small Reynolds number. By using viscoelastic surfactant solution, we attempted to create the peculiar chaotic fluid motions in several specially designed microchannels in which flows with curvilinear streamlines can be generated. The viscoelastic working fluids were aqueous solutions of surfactant, CTAC/NaSal (cetyltrimethyl ammonium chloride/sodium salicylate). CTAC solutions with weight concentration of 200 ppm (part per million) and 1000 ppm, respectively, at room temperature were tested. For comparison, water flows in the same microchannels were also visualized. The Reynolds numbers for all the microchannel flows were quite small (for solution flows, the Reynolds numbers were the order of or smaller than one) and the flow should be definitely laminar for Newtonian fluid. It was found that the regular laminar flow patterns for low-Reynolds-number Newtonian fluid flow in different microchannels were strongly deformed in solution flows: either asymmetrical flow structures or time-dependent vortical fluid motions appeared. These chaotic flow phenomena were considered to be induced by the viscoelasticity of the CTAC solutions. Discussions about the potential applications using such kind of chaotic fluid motions were also made.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号