首页 | 本学科首页   官方微博 | 高级检索  
     


Binary phase behavior and aggregation of dilute methanol in supercritical carbon dioxide: a Monte Carlo simulation study
Authors:Stubbs John M  Siepmann J Ilja
Affiliation:Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455-0431, USA.
Abstract:Configurational-bias Monte Carlo simulations in the Gibbs and isobaric-isothermal ensembles using the transferable potentials for phase equilibria force field were carried out to investigate the thermophysical properties of mixtures containing supercritical carbon dioxide and methanol. The binary vapor-liquid coexistence curves were calculated at 333.15 and 353.15 K and are in excellent agreement with experimental measurements. The self-association of methanol in supercritical carbon dioxide was investigated over a range of temperatures and pressures near the mixture critical point. The temperature dependence of the equilibrium constants for the formation of hydrogen-bonded aggregates (from dimer to heptamer) allowed for the determination of the enthalpy of hydrogen bonding, DeltaHHB, in supercritical carbon dioxide with values for DeltaHHB of about 15 kJ mol(-1) falling within the range of previously proposed values. No strong pressure dependence was observed for the formation of aggregates. Apparently the decrease of the entropic penalty and of the enthalpic benefit upon increasing pressure or solvent density mostly cancel each other's effect on aggregate formation.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号