首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Growth of heavily C-doped GaAs/AlGaAs MQW structures by MOVPE for 2–3 μm normal incidence photodetectors
Authors:E Mao  A Majerfeld
Institution:

Department of Electrical and Computer Engineering, CB 425, University of Colorado, Boulder, Colorado 80309, USA

Abstract:The growth and intersubband optical properties of high quality heavily doped p-type GaAs/AlGaAs multiple quantum well (MQW) structures are reported. The MQWs were fabricated by the atmospheric pressure metalorganic vapor phase epitaxy process using liquid CCl4 to dope the wells with C acceptors (Na ≈ 2 × 1019 cm?3). A constant growth temperature was maintained for the entire structure while different V/III ratios were used for the well and barrier regions. By this process it is possible to achieve both high C doping densities in the wells and to simultaneously obtain good quality AlGaAs barriers. Fourier transform infrared spectroscopy measurements on heavily doped 10-period MQW structures reveal a new absorption peak at not, vert, similar 2 μm with an effective normal incidence absorption coefficient of 4000 cm?1. Photocurrent measurements on mesa-shaped diodes show a corresponding peak at 2.1 μm. The photodiodes exhibit a symmetrical current-voltage characteristic and a low dark current, which are indicative of a high quality MQW structure and a well-controlled C doping profile. The 2 μm absorption represents the shortest wavelength ever reported for any GaAs/AlGaAs or InGaAs/AlGaAs MQW structure and should be very useful for implementing multicolor infrared photodetectors.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号