首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A synthesis of porous activated carbon materials derived from vitamin B9 base for CO2 capture and conversion
Authors:X Wang  W Hui  A Hu  X Li  Y Li  H Wang
Institution:The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
Abstract:CO2 capture and conversion are still a favorable way to reduce CO2 in the atmosphere. Herein, we have developed an environmentally friendly, low energy consumption porous activated carbon from vitamin B9 carbonaceous material for CO2 capture and conversion materials. It is demonstrated that the KOH/vitamin B9 carbonaceous material impregnation ratio of 2 is the optimum condition for obtaining porous activated carbons with high specific surface area of 1903 m2g-1, micropore surface area of 710 m2g-1, total pore volume of 1.05 cm3g-1 and micropore volume of 0.38 cm3g-1. Among all the porous activated carbons prepared, the porous activated carbon synthesized with the KOH/vitamin B9 carbonaceous material impregnation ratio of 2 registers the most excellent CO2 capture for 5.41 mmolg?1 at 0 °C/1 bar and 3.66 mmolg?1 at 25 °C/1 bar. They can also effectively catalyze the cycloaddition of CO2 and epoxides under mild conditions (1 bar, 100 °C and 8 h) with a yield of 89–94%. The synthesized porous carbon materials from vitamin B9 is a promising candidate material for CO2 capture and fixation.
Keywords:Vitamin B9  Porous activated carbons  Cycloaddition
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号