首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Graphene oxide-gelatin aerogels as wound dressings with improved hemostatic properties
Authors:S Guajardo  T Figueroa  J Borges  C Aguayo  K Fernández
Institution:1. Laboratory of Biomaterials, Department of Chemical Engineering, Faculty of Engineering, University of Concepcion, P.O. Box 160-C, Concepcion, 4030000, Chile;2. Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepcion, Concepcion, 4030000, Chile
Abstract:Graphene oxide (GO)-gelatin (G) aerogels were synthesized via the physical interactions between GO-oxygenated groups and G amine groups to obtain potential hemostatic devices. The influence of the aerogel synthesis conditions—acid and basic GO suspensions—was used to evaluate their clotting performance. These materials were also characterized by Fourier transform infrared spectroscopy, X-ray diffraction, Raman spectroscopy, and thermogravimetric analysis, and their properties of absorption, stiffness, porosity, surface charge, and pore size were measured and compared. The clotting activity of the materials was evaluated by prothrombin time, activated partial thromboplastin time, soluble human P-selectin, and in vitro dynamic clotting assays, as well as their cytotoxicity. GO-G aerogels presented heterogeneous microporous structures with porosities higher than 90% and a high PBS absorption capacity, 49.6 ± 3.8 gPBS/gaerogel for positively charged aerogels (15.63 ± 0.5 mV) and 42.75 ± 2.38 gPBS/gaerogel for negatively charged aerogels (?20.53 ± 1.07 mV). Comparatively, positively charged aerogels had superior structural properties to negatively charged aerogels, such as stiffness, porosities, and pore sizes, because they promote H bonding. In regard to hemostatic activity, negatively charged aerogels had higher clotting performance, reaching 95.6% clotted blood, and therefore provide a suitable structure for the coagulation process and promote clot formation without using common mechanisms. In addition, negatively charged aerogels were not cytotoxic and promoted fibroblast proliferation. Therefore, negatively charged GO-G aerogels may be a potential hemostatic device that can be used as a wound dressing.
Keywords:Aerogel synthesis  Blood absorption  Cytotoxicity  Gelatin  Coagulation
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号