首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Effect of mass transfer on the film drainage between colliding drops
Authors:Chevaillier J-P  Klaseboer E  Masbernat O  Gourdon C
Institution:Institut de Mécanique des Fluides de Toulouse, UMR 5502 CNRS/INPT/UPS, Avenue du Professeur Camille Soula, 31400 Toulouse, France.
Abstract:The influence of mass transfer on the drainage behaviour of the thin liquid film between two drops immersed in another liquid colliding at constant approach velocity has been studied experimentally. The liquid-liquid system used is glycerol in silicone oil. The transferred solute is acetone and the volume concentration difference across the interface ranges from 1 to 5%. The film thickness evolution has been measured using a laser interferometry technique. The direction of mass transfer (from the drops towards the film phase and inversely) has been investigated and the results compared to the case with no mass transfer. When the solute transfers from the drops towards the continuous phase, the drainage rate is significantly higher than in the case with no mass transfer. This result is interpreted as a consequence of the mass transfer induced surface mobility in the film region (the so-called Marangoni effect) due to localized surface tension differences. This effect has been demonstrated by the visualization of the flow patterns in the drops and in the film phase (using a particle tracer technique). In this case, the slope of the film height as a function of time seems to be independent of the approach velocity condition imposed on the drop and appears to be controlled by the interfacial tension gradient. In the opposite case, when the solute transfers from the continuous phase towards the drops, the film drainage rate is lowered with respect to the case of no mass transfer, goes to zero or even changes its sign depending on the mass transfer intensity. The results also show that in the range of solute concentration studied, the effect of mass transfer on the film drainage process takes place at large distances compared to the scales at which lubrication theory is valid.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号