首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Behavior of ethylene and ethane within single-walled carbon nanotubes. 1-Adsorption and equilibrium properties
Authors:Fernando J A L Cruz  Erich A Müller
Institution:(1) Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
Abstract:Endohedral adsorption properties of ethylene and ethane onto single-walled carbon nanotubes were investigated using a united atom (2CLJQ) and a fully atomistic (AA-OPLS) force fields, by Grand Canonical Monte Carlo and Molecular Dynamics techniques. Pure fluids were studied at room temperature, T=300 K, and in the pressure ranges 4×10−4<p<47.1 bar (C2H4) and 4×10−4<p<37.9 bar (C2H6). In the low pressure region, isotherms differ quantitatively depending on the intermolecular potential used, but show the same qualitative features. Both potentials predict that ethane is preferentially adsorbed at low pressures, and the opposite behavior was observed at high loadings. Isosteric heats of adsorption and estimates of low pressure Henry’s constants, confirmed that ethane adsorption is the thermodynamically favored process at low pressures. Binary mixtures of C2H4/C2H6 were studied under several (p,T) conditions and the corresponding selectivities towards ethane, S, were evaluated. Small values of S<4 were found in all cases studied. Nanotube geometry plays a minor role on the adsorption properties, which seem to be driven at lower pressures primarily by the larger affinity of the alkane towards the carbon surface and at higher pressures by molecular volume and packing effects. The fact that the selectivity towards ethane is similar to that found earlier on carbon slit pores and larger diameter nanotubes points to the fact that the peculiar 1-D geometry of the nanotubes provides no particular incentive for the adsorption of either species.
Keywords:Adsorption  Molecular simulation  Carbon nanotubes  Ethylene  Ethane  Grand canonical Monte Carlo  Molecular dynamics
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号