首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Helical states around a mass-inverted quantum dot in graphene
Abstract:Topologically protected helical states at a mass-inverted quantum dot in graphene are studied by analyzing both tight-binding and kernel polynomial method calculations. The mass-inverted quantum dot is introduced by considering a heterojunction between two different mass domains, which is similar to the domain wall in bilayer graphene. The numerical results show emergent metallic channels across the mass gap when the signs of the mass terms are opposite. The eigenstates of the metallic channels are revealed to be doubly degenerate—each state propagates along opposite directions, maintaining the time-reversal symmetry of graphene. The robustness of the metallic channels is further examined, concluding with the fact that helical states are secured unless atomic vacancies form near the domain wall. Such helical states circulating along the topological defects may pave a novel route to engineering topological states based on graphene.
Keywords:Topological states  Band inversion  Topological defects  Graphene  Insulator-to-metal transition
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号