首页 | 本学科首页   官方微博 | 高级检索  
     


Ion tracks in ultrathin polymer films: The role of the substrate
Affiliation:1. Interdisciplinary Center of Nanoscience and Micro-Nanotechnology, School of Technology, Pontifical Catholic University of Rio Grande do Sul, PUCRS, Av. Ipiranga 6681, Porto Alegre, 90619-900, Rio Grande do Sul, Brazil;2. Institute of Physics, Federal University of Rio Grande do Sul, UFRGS, Av. Bento Gonçalves 9500, Porto Alegre, 91501-970, Rio Grande do Sul, Brazil;3. Department of Physics, Federal University of Santa Catarina, UFSC, R. Roberto Sampaio Gonzaga s/n, Florianópolis, 88040-900, Santa Catarina, Brazil;4. GSI Helmholtzzentrum für Schwerionenforschung, Planckstr. 1, Darmstadt, 64291, Hesse, Germany;5. Fachbereich Materialwissenschaften, Technische Universität Darmstadt, Alarich-Weiss-Str. 2, Darmstadt, 64287, Hesse, Germany
Abstract:Surface damage produced by single MeV-GeV heavy ions impacting ultrathin polymer films has been shown to be weaker than those observed under bulk (thick film) conditions. The decrease in damage efficiency has been attributed to the suppression of long-range effects arising from excited atoms lying deeply in the solid. This raises the possibility that the substrate of the films itself is relevant to the radiation effects seen at the top surface. Here, the role of the substrate on cratering induced by individual 1.1 GeV Au ions in ultrathin poly(methyl methacrylate) (PMMA) layers is investigated. Materials of different thermal and electrical properties (Si, SiO2, and Au) are used as substrates to deposit PMMA thin films of various thicknesses from ∼1 to ∼300 nm. We show that in films thinner than ∼40 nm craters are modulated by the underlying substrate to a degree that depends on the transport properties of the medium. Crater size in ultrathin films deposited on the insulating SiO2 is larger than in similar films deposited on the conducting Au layer. This is consistent with an inefficient coupling of the electronic excitation energy to the atomic cores in metals. On the other hand, the damage on films deposited on SiO2 is not very different from the Si substrate with a native oxide layer, suggesting, in addition, poor energy transmission across the film/substrate interface. The experimental observations are also compared to calculations from an analytical model based on energy addition and transport from the excited ion track, which describe only partially the results.
Keywords:Ion tracks  Low dimensional materials  Polymer thin films  Radiation effects
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号