首页 | 本学科首页   官方微博 | 高级检索  
     


Composite Cathode Based on Redox-Reversible Nb2TiO7 for Direct High-Temperature Steam Electrolysis
Authors:Shi-song Li  Ji-gui Cheng  Xu-cheng Zhang  Yu Wang  Kui Xie
Affiliation:Department of Energy Materials, School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
Abstract:Ni/YSZ fuel electrodes can only operate under strongly reducing conditions for steam electrolysis in an oxide-ion-conducting solid oxide electrolyzer (SOE). In atmosphere with a low content of H2 or without H2, cathodes based on redox-reversible Nb2TiO7 provide a promising alternative. The reversible changes between oxidized Nb2TiO7 and reduced Nb1.33Ti0.67O4 samples are systematically investigated after redox-cycling tests. The conductivities of Nb2TiO7 and reduced Nb1.33Ti0.67O4 are studied as a function of temperature and oxygen partial pressure and correlated with the electrochemical properties of the composite electrodes in a symmetric cell and SOE at 830 oC. Steam electrolysis is then performed using an oxide-ion-conducting SOE based on a Nb1.33Ti0.67O4 composite fuel electrode at 830 oC. The current-voltage and impedance spectroscopy tests demonstrate that the reduction and activation of the fuel electrode is the main process at low voltage; however, the steam electrolysis dominates the entire process at high voltages. The Faradic efficiencies of steam electrolysis reach 98.9% when 3%H2O/Ar/4%H2 is introduced to the fuel electrode and 89% for that with introduction of 3%H2O/Ar.
Keywords:Redox-reversible   Alternative fuel electrode   Solid oxide electrolyzer   Steam electrolysis
点击此处可从《化学物理学报(中文版)》浏览原始摘要信息
点击此处可从《化学物理学报(中文版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号