首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A Coupled FE-BE Analysis of Smart Lightweight Structures for Active Noise and Vibration Control
Authors:Stefan Ringwelski  Ulrich Gabbert
Institution:Institute of Mechanics, Otto–von–Guericke University of Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
Abstract:Over the past years much research and development has been done in the area of active control in order to improve the acoustical and vibrational properties of thin–walled lightweight structures. An efficient technique for actively reducing the structural vibration and sound radiation is the application of smart structures. In smart structures piezoelectric materials are often used as actuators and sensors. The design of smart structures requires fast and reliable simulation tools. Therefore, the purpose of this paper is to present a coupled finite element–boundary element formulation, which enables the modeling of piezoelectric smart lightweight structures. The paper describes the theoretical background of the coupled approach in which the finite element method (FEM) is applied for the modeling of the passive vibrating shell structure as well as the surface attached piezoelectric actuators and sensors. The boundary element method (BEM) is used to characterize the corresponding sound field. In order to derive a coupled FE–BE formulation additional coupling conditions are introduced at the fluid–structure interface. Since the resulting overall model contains a large number of degrees of freedom, the mode superposition method is employed to reduce the size of the FE submodel. To validate the accuracy of the proposed approach, numerical simulations are carried out in the frequency domain and the results are compared with analytical reference solutions. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号