Phase Equilibria of Hydrogen Bonding Fluid in a Slit Pore with Broken Symmetry |
| |
Authors: | Xiao-yu Liu Jiang-tao Li Fang Gu Hai-jun Wang |
| |
Affiliation: | 1.College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China2.College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China;Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, China;Key Laboratory of Medical Chemistry and Molecular Diagnosis, Ministry of Education, Baoding 071002, China |
| |
Abstract: | Phase equilibria of hydrogen bonding (HB) fluid confined in a slit pore with broken symmetry were investigated by the density functional theory incorporated with modified fundamental measure theory, where the symmetry breaking originated from the distinct interactions between fluid molecules and two walls of the slit pore. In terms of adsorption-desorption isotherms and the corresponding grand potentials, phase diagrams of HB fluid under various conditions are presented. Furthermore, through phase coexistences of laying transition and capillary condensation, the effects of HB interaction, pore width, fluid-pore interaction and the broken symmetry on the phase equilibrium properties are addressed. It is shown that these factors can give rise to apparent influences on the phase equilibria of confined HB fluid because of the competition between intermolecular interaction and fluid-pore interaction. Interestingly, a significant influence of broken symmetry of the slit pore is found, and thus the symmetry breaking can provide a new way to regulate the phase behavior of various confined fluids. |
| |
Keywords: | Hydrogen bonding fluid Broken symmetry Phase equilibria Density functional theory |
|
| 点击此处可从《化学物理学报(中文版)》浏览原始摘要信息 |
|
点击此处可从《化学物理学报(中文版)》下载免费的PDF全文 |
|