首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Magnetoswitchable reactions of DNA monolayers on electrodes: gating the processes by hydrophobic magnetic nanoparticles
Authors:Katz Eugenii  Weizmann Yossi  Willner Itamar
Institution:Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
Abstract:Biorecognition and biocatalytic reactions of DNA monolayers, such as hybridization, polymerization, and hydrolytic digestion, were followed in situ by chronocoulometry and Faradaic impedance spectroscopy. Hydrophobic magnetic nanoparticles attracted to, and retracted from, the electrode surface by an external magnetic field were used to activate and inhibit the DNA-monolayer reactions, respectively. The attraction of the magnetic nanoparticles to the electrode surface generated a hydrophobic thin film on the surface that is not permeable for the water-soluble components required for the DNA-monolayer reactions. This results in the inhibition of the DNA-monolayer reactions. The retraction of the magnetic nanoparticles from the surface regenerated the free nucleic acid-functionalized surface that was exposed to the aqueous solution, thus reactivating the DNA-monolayer reactions. The reversible inhibition and activation of the DNA-monolayer reactions upon the cyclic attraction-retraction of the hydrophobic magnetic nanoparticles may be used to synthesize programmed DNA chips.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号