首页 | 本学科首页   官方微博 | 高级检索  
     


A lattice Boltzmann method for incompressible two-phase flows on partial wetting surface with large density ratio
Affiliation:1. School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044, PR China;2. Department of Mechanical Engineering, Tsinghua University, Beijing 100084, PR China
Abstract:This paper reports a new numerical scheme of the lattice Boltzmann method for calculating liquid droplet behaviour on particle wetting surfaces typically for the system of liquid–gas of a large density ratio. The method combines the existing models of Inamuro et al. [T. Inamuro, T. Ogata, S. Tajima, N. Konishi, A lattice Boltzmann method for incompressible two-phase flows with large density differences, J. Comput. Phys. 198 (2004) 628–644] and Briant et al. [A.J. Briant, P. Papatzacos, J.M. Yeomans, Lattice Boltzmann simulations of contact line motion in a liquid–gas system, Philos. Trans. Roy. Soc. London A 360 (2002) 485–495; A.J. Briant, A.J. Wagner, J.M. Yeomans, Lattice Boltzmann simulations of contact line motion: I. Liquid–gas systems. Phys. Rev. E 69 (2004) 031602; A.J. Briant, J.M. Yeomans, Lattice Boltzmann simulations of contact line motion: II. Binary fluids, Phys. Rev. E 69 (2004) 031603] and has developed novel treatment for partial wetting boundaries which involve droplets spreading on a hydrophobic surface combined with the surface of relative low contact angles and strips of relative high contact angles. The interaction between the fluid–fluid interface and the partial wetting wall has been typically considered. Applying the current method, the dynamics of liquid drops on uniform and heterogeneous wetting walls are simulated numerically. The results of the simulation agree well with those of theoretical prediction and show that the present LBM can be used as a reliable way to study fluidic control on heterogeneous surfaces and other wetting related subjects.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号