首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A faster aggregation for 3D fast evanescent wave solvers using rotations
Institution:1. Department of Engineering Mechanics, Hefei University of Technology, Hefei 230009, China;2. Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, Minneapolis MN 55455, USA
Abstract:A novel technique to accelerate the aggregation and disaggregation stages in evanescent plane wave methods is presented. The new method calculates the six plane wave radiation patterns from a multipole expansion (aggregation) and calculates the multipole expansion of an incoming field from the six plane wave incoming field patterns. It is faster than the direct approach for multipole orders larger than one, and becomes six times faster for large multipole orders. The method relies on a connection between the discretizations of the six integral representations, and on the fact that the Wigner D-matrices become diagonal for rotations around the z-axis. The proposed technique can also be extended to the vectorial case in two different ways, one of which is very similar to the scalar case. The other method relies on a Beltrami decomposition of the fields and is faster than the direct approach for any multipole order. This decomposition is also not limited to evanescent wave solvers, but can be used in any vectorial multilevel fast multipole algorithm.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号