首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Vibration reduction of a three DOF non-linear spring pendulum
Institution:1. School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China;2. Department of Mechanical Engineering, The University of Auckland, Auckland 1010, New Zealand
Abstract:The dynamic response of mechanical and civil structures subject to high-amplitude vibration is often dangerous and undesirable. Vibrations and dynamic chaos should be controlled or eliminated in both structures and machines. This can be employed via passive and active control methods. In this paper, a tuned absorber, in the transversally direction, is connected to an externally excited spring–pendulum system (three degree of freedom), subjected to harmonic excitation. The tuned absorber is usually designed to control one frequency at primary resonance where system damage is probable. Active control is also applied to the considered system via negative displacement feedback to change the linear frequency of the system and to shift it away from the resonating one. Also active control is applied to improve the behavior of the spring–pendulum at the primary resonance via negative velocity feedback or its square or cubic value. The multiple time scale perturbation technique is applied throughout. The stability of the system is investigated applying both frequency response function and phase-plane method. The effects of the absorber and different parameters on system behavior are studied numerically. Optimum working conditions of the system are extracted applying both passive and active control methods, to be used in the design of such systems.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号