首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Polyamide 6 treated with pentabromobenzyl acrylate and layered silicates
Authors:Menachem Lewin  Jin Zhang  Eli Pearce  Mauro Zammarano
Institution:1. Polytechnic Institute of NYU, 6 MetroTech Center, Brooklyn, NY 11201 USA;2. Building and Fire Research Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899‐8665, USA
Abstract:A study of the simultaneous application of a brominated flame retardant and an organically layered silicate (OLS) for the flame retarding of polyamide 6 (PA6) is presented. Upon treating PA6 with at least 7 wt% monomeric pentabromobenzyl acrylate (PMA), a UL‐94 V‐0 rating and an oxygen index (OI) value of 29.7 were obtained. By adding 1 wt% organically layered montorillonite (OMMT) and 10 wt% PMA, the V‐0 rating remained, indicating cooperation between PMA and OMMT. Higher concentrations of OMMT result in a decreased UL‐94 rating showing an antagonism. The size and mass of drops formed in the UL‐94 test increased with increasing OMMT, suggesting an increase in the viscosity and density of the pyrolyzing matrix. The effect of the Br additive on the peak heat release rate (PHRR) measured in the cone calorimeter is similar, but smaller, than that of clay. A calculation of the synergistic effectivity related to PHRR enabling a numerical estimate of the extent of synergism or antagonism is presented. When the ill‐dispersed pristine clay (Na+MMT) is used, the viscosity does not increase, the PHRR decreases slightly, but the mass loss rate (MLR) is close to that of the matrix. The time of ignition (TOI) decreases upon the addition of PMA, similarly to the addition of OMMT. This is explained by migration of the Br additive to the surface barrier similar to that of clay so that the low thermal conductivity (TC) barrier is formed before the ignition. Accumulation of heat in the barrier decreases the TOI. Copyright © 2010 John Wiley & Sons, Ltd.
Keywords:polyamide  clay  flame retardancy  migration  pentabromobenzyl acrylate
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号