首页 | 本学科首页   官方微博 | 高级检索  
     检索      


High‐throughput UHPLC–MS/MS method for the detection,quantification and identification of fifty‐five anabolic and androgenic steroids in equine plasma
Authors:Fuyu Guan  Cornelius E Uboh  Lawrence R Soma  Youwen You  Ying Liu  Xiaoqing Li
Institution:1. School of Veterinary Medicine, University of Pennsylvania, New Bolton Center Campus, 382 West Street Road, Kennett Square, PA 19348, USA;2. Pennsylvania Equine Toxicology and Research Center, 220 East Rosedale Avenue, West Chester University, West Chester, PA 19382, USA
Abstract:Anabolic and androgenic steroids (AASs) are synthetic substances related to the primary male sex hormone, testosterone. AASs can be abused in both human and equine sports and, thus, are banned by the International Olympic Committee and the Association of Racing Commissioners International (ARCI). Enforcement of the ban on the use of AASs in racehorses during competition requires a defensible and robust method of analysis. To address this requirement, a high‐throughput ultra high‐performance liquid chromatography–mass spectrometric (UHPLC–MS) method was developed for the detection, quantification and confirmation of 55 AASs in equine plasma. AASs were recovered from equine plasma samples by liquid–liquid extraction with methyl tert‐butyl ether (MTBE). Analytes were chromatographically separated on a sub‐2 µm particle size C18 column with a mobile phase gradient elution and detected by selected‐reaction monitoring (SRM) on a triple quadrupole mass spectrometer. AASs with isobaric precursor ions were either chromatographically resolved or mass spectrometrically differentiated by unique precursor‐to‐product ion transitions. A few of them that could not be resolved by both approaches were differentiated by intensity ratios of three major product ions. All the epimer pairs, testosterone and epitestosterone, boldenone and epiboldenone, nandrolone and epinandrolone, were chromatographically base‐line separated. The limit of detection and that of quantification was 50 pg/ml for most of the AASs, and the limit of confirmation was 100–500 pg/ml. Full product ion spectra of AASs at concentrations as low as 100–500 pg/ml in equine plasma were obtained using the triple quadrupole instrument, to provide complementary evidentiary data for confirmation. The method is sensitive and selective for the detection, quantification and confirmation of multiple AASs in a single analysis and will be useful in the fight against doping of racehorses with AASs. Copyright © 2010 John Wiley & Sons, Ltd.
Keywords:anabolic and androgenic steroid  high‐throughput analysis  LC–  MS/MS  doping analysis  equine  plasma
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号