首页 | 本学科首页   官方微博 | 高级检索  
     


Electrospray ionization collision‐induced dissociation mass spectrometry: a tool to characterize synthetic polyaminocarboxylate ferric chelates used as fertilizers
Authors:Irene Orera  Jesús Orduna  Javier Abadía  Ana Álvarez‐Fernández
Affiliation:1. Department of Plant Nutrition, Aula Dei Experimental Station, CSIC, P.O. Box 13034, E‐50080 Zaragoza, Spain;2. New Organic Materials Unit, Institute of Materials of Aragón, CSIC‐University of Zaragoza, c/ Pedro Cerbuna 12, E‐50009 Zaragoza, Spain
Abstract:Fertilizers based on synthetic polyaminocarboxylate ferric chelates have been known since the 1950s to be successful in supplying Fe to plants. In commercial Fe(III)‐chelate fertilizers, a significant part of the water‐soluble Fe‐fraction consists of still uncharacterized Fe byproducts, whose agronomical value is unknown. Although collision‐induced dissociation (CID) tandem mass spectrometry (MS/MS) is a valuable tool for the identification of such compounds, no fragmentation data have been reported for most Fe(III)‐chelate fertilizers. The aim of this study was to characterize the CID‐MS2 fragmentation patterns of the major synthetic Fe(III)‐chelates used as Fe‐fertilizers, and subsequently use this technique for the characterization of commercial fertilizers. Quadrupole‐time‐of‐flight (QTOF) and spherical ion trap mass analyzers equipped with an electrospray ionization (ESI) source were used. ESI‐CID‐MS2 spectra obtained were richer when using the QTOF device. Specific differences were found among Fe(III)‐chelate fragmentation patterns, even in the case of positional isomers. The analysis of a commercial Fe(III)‐chelate fertilizer by high‐performance liquid chromatography (HPLC) coupled to ESI‐MS(QTOF) revealed two previously unknown, Fe‐containing compounds, that were successfully identified by a comprehensive comparison of the ESI‐CID‐MS2(QTOF) spectra with those of pure chelates. This shows that HPLC/ESI‐CID‐MS2(QTOF), along with the Fe(III)‐chelate fragmentation patterns, could be a highly valuable tool to directly characterize the water‐soluble Fe fraction in Fe(III)‐chelate fertilizers. This could be of great importance in issues related to crop Fe‐fertilization, both from an agricultural and an environmental point of view. Copyright © 2009 John Wiley & Sons, Ltd.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号