首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Kinetics of polymerization by activated monomer mechanism
Authors:Tadeusz Biedron  Ryszard Szymanski  Przemyslaw Kubisa  Stanislaw Penczek
Abstract:Polymerization of cyclic ethers by activated monomer mechanism involves consecutive additions of protonated monomer molecules to the growing macromolecules fitted with hydroxyl groups at their ends. For oxirane itself and symmetrically substituted oxiranes there is only one kind of hydroxyl groups and one, unique way of ring-opening. Unsymmetrically substituted oxiranes provide however two sites of attack and two different hydroxyls, resulting from these ring-openings. Kinetics of polymerization of epichlorohydrin (chloromethyloxirane) has been studied and all four rate constants determined, namely rate constants of the primary and secondary alcoholate chain ends with a protonated monomer, opening in result of the attack on substituted or unsubstituted carbon atom. These rate constants are (in mol−1·1·s−1 at 25°C, in CH2Cl2 solvent): k11 = 0.055, k12 = = 0.41, k22 = 0.135, and k21 = 0.0011 (e.g. k12 is the rate of reaction of the primary alcohol producing the secondary alcohol). Thus, polymerization proceeds almost exclusively on the secondary alcoholate groups, reproducing themselves (k22).
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号