首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Versatile Benzimidazole/Triphenylamine Hybrids: Efficient Nondoped Deep‐Blue Electroluminescence and Good Host Materials for Phosphorescent Emitters
Authors:Shaolong Gong  Yongbiao Zhao  Meng Wang  Chuluo Yang  Cheng Zhong  Jingui Qin  Dongge Ma
Abstract:Two new bipolar compounds, N,N,N′,N′‐tetraphenyl‐5′‐(1‐phenyl‐1H‐benzimidazol‐2‐yl)‐1,1′:3′,1′′‐terphenyl‐4,4′′‐diamine ( 1 ) and N,N,N′,N′‐tetraphenyl‐5′‐(1‐phenyl‐1H‐benzimidazol‐2‐yl)‐1,1′:3′,1′′‐terphenyl‐3,3′′‐diamine ( 2 ), were synthesized and characterized, and their thermal, photophysical, and electrochemical properties were investigated. Compounds 1 and 2 possess good thermal stability with high glass‐transition temperatures of 109–129 °C and thermal decomposition temperatures of 501–531 °C. The fluorescence quantum yield of 1 (0.52) is higher than that of 2 (0.16), which could be attributed to greater π conjugation between the donor and acceptor moieties. A nondoped deep‐blue fluorescent organic light‐emitting diode (OLED) using 1 as the blue emitter displays high performance, with a maximum current efficiency of 2.2 cd A−1 and a maximum external efficiency of 2.9 % at the CIE coordinates of (0.17, 0.07) that are very close to the National Television System Committee’s blue standard (0.15, 0.07). Electrophosphorescent devices using the two compounds as host materials for green and red phosphor emitters show high efficiencies. The best performance of a green phosphorescent device was achieved using 2 as the host, with a maximum current efficiency of 64.3 cd A−1 and a maximum power efficiency of 68.3 lm W−1; whereas the best performance of a red phosphorescent device was achieved using 1 as the host, with a maximum current efficiency of 11.5 cd A−1, and a maximum power efficiency of 9.8 lm W−1. The relationship between the molecular structures and optoelectronic properties are discussed.
Keywords:benzimidazole  host–  guest systems  materials science  phosphorescence  triphenylamine
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号