首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Analytic energy gradient in combined time-dependent density functional theory and polarizable force field calculation
Authors:Si Dejun  Li Hui
Institution:Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA.
Abstract:Formulas for evaluating analytic energy gradient are derived for combined time-dependent density functional theory (TDDFT) and polarizable force field methods that incorporate dipole polarizability tensors and linearly induced point dipoles. The Z-vector method for determining relaxed one-particle difference density matrix in regular TDDFT methods is extended to include induced dipoles. The analytic gradient of the mutual polarization energy of the force field and the TDDFT excited state can be formulated by using the TDDFT difference density-induced dipoles and the transition state density-induced dipoles. All the forces and torques involving induced dipoles can be efficiently evaluated using standard electrostatic formulas as if the induced dipoles were permanent dipoles. The formulas are given in the most general form and are applicable to various flavors of polarizable force fields. Implementation and tests with a polarizable five-point water model show that the formulas are rigorous. The carbonyl vibration modes and infrared spectrum intensities of a cluster formed by acetone and two water molecules are studied.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号