首页 | 本学科首页   官方微博 | 高级检索  
     


A domain-independent integral for computation of stress intensity factors along three-dimensional crack fronts and edges by BEM
Affiliation:School of Engineering, Group of Elasticity and Strength of Materials, University of Seville, Camino de los Descubrimientos s/n, 41092 Seville, Spain
Abstract:The present work deals with an evaluation of stress intensity factors (SIFs) along straight crack fronts and edges in three-dimensional isotropic elastic solids. A new numerical approach is developed for extraction, from a solution obtained by the boundary element method (BEM), of those SIFs, which are relevant for a failure assessment of mechanical components. In particular, the generalized SIFs associated to eigensolutions characterized by unbounded stresses at a neighbourhood of the crack front or a reentrant edge and also that associated to T-stress at the crack front can be extracted. The method introduced is based on a conservation integral, called H-integral, which leads to a new domain-independent integral represented by a scalar product of the SIF times some element shape function defined along the crack front or edge. For sufficiently small element lengths these weighted averages of SIFs give reasonable pointwise estimation of the SIFs. A proof of the domain integral independency, based on the bi-orthogonality of the classical two-dimensional eigensolutions associated to a corner problem, is presented. Numerical solutions of two three-dimensional problems, a crack problem and a reentrant edge problem, are presented, the accuracy and convergence of the new approach for SIF extraction being analysed.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号