Abstract: | Carbocycles from monosaccharides. III. Concerning the diastereoselective formation of cyclopentane derivatives. Transformations in the galactose series. The diastereoselectivity of the intramolecular nitrone-olefine cycloaddition of 1 , 3 and 4 (Scheme 1), yielding only 2 , 5 and 6 but none of the isomers 8 , 9 and 10 is explained by assuming a kinetic control and postulating that the relative activation energies of the two relevant transition states in the cyclization of e.g. 1 can be estimated from the conformers A and B , the latter being destabilized by a synperiplanar arrangement of the nitrone function and the 2-alkoxy-group (Scheme 2). It is further postulated, that this destabilization is responsible for the formation of (2,3)-trans configurated products. Since 2 , 5 and 6 are presumably thermodynamically more stable than 8 , 9 and 10 , a case was investigated, where the cycloaddition can either give thermodynamically less stable (2,3)-trans-product such as 12 or a thermodynamically more stable (2,3)-cis-product such as 13. 12 and 13 could both be formed from the aldehyde 25 via the nitrone 11 (Schemes 3 and 5). Treatment of the galactoside 16 first with Zn in aqueous butanol (forming among other products 25 and its 2-debenzyl-oxy-derivative) and then with N-Methyldroxylamine yielded the isoxazolidines 12 (72%), 13 (2%) and 27 (7%) (Schemes 4 and 6). Similarily, the anomeric silylated galactosides 17 and 23 gave 29 (78% from 17 , 77% from 23 ) and 27 (5% and 3%). Upon desilylation, 29 gave 32 , which was converted into 12 . The structure of the isoxazolidines was unambiguously deduced from their NMR. spectra and those of their derivatives 33 and 34 . Compound 32 was further transformed into its deoxyderivative 36 . The high diastereoselectivity of the cycloaddition restricts the number of diastereomeric, pentasubstituted cyclopentanes available by this method. However, cyclization of the 2-Hydroxy-aldehyde 37 (Scheme 8) gave the kinetically less favoured isomer 40 in a higher proportion, showing the differential influence of hydrogen-bonds on the relevant activation energies. Thermolysis of 32 gave 40 (79%) and 41 (11%). The structure of 41 was deduced from its NMR. spectra and those of its derivatives 42 and 43 . Thermolysis of 29 gave, after desilylation, 41 (42%), 40 (22%) and 32 (13%) and thermolysis of 6 lead to a 25 : 75 equilibrium with 44 (combined yield 90%). These transformations illustrate means leading to additional isomers and are in agreement with the proposed explanation of the diastereoselectivity in question. |