首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Evaluating the electrochemical capacitance of surface-charged nanoparticle oxide coatings
Authors:Leonard Kevin C  Suyama Wendy E  Anderson Marc A
Institution:Materials Science Program, University of Wisconsin-Madison, 660 North Park Street, Madison, Wisconsin 53706, USA. kcleonard@wisc.edu
Abstract:While transition metal oxides have been thoroughly investigated as coatings for electrochemical capacitors due to their pseudocapacitance, little work has been done investigating other oxide coatings. There exists a whole class of nanoporous oxides typically synthesized by sol-gel chemistry techniques that have very high differential capacitance. This high differential capacitance has been attributed to the surface potential of these materials and the close approach of counterions near the surface of these oxides. This study focuses on investigating the electrochemical capacitance of non-transition metal oxide nanoparticle coatings when deposited on supporting electrodes. Here, we show that, by adding coatings of SiO(2), AlOOH, TiO(2), and ZrO(2) nanoparticles to graphite support electrodes, we can increase the electrochemical capacitance. We also show that the measured electrochemical capacitance of these oxide-coated electrodes directly relates to the electrophoretic mobility of these materials with the lowest values in capacitance occurring at or near the respective isoelectric pH (pH(IEP)) of each oxide.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号