首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Acetone Droplet Behavior in Reacting and Non Reacting Turbulent Flow
Authors:M Chrigui  J Gounder  A Sadiki  J Janicka  A R Masri
Institution:1. Institute for Energy and Power plant Technology, TU Darmstadt, Petersenstr, Germany
2. Institut Superieur des Systemes Industriels de Gabes, University of Gabes, 6001, Gabes, Tunisia
3. School of Aerospace, Mechanical and Mechatronic Eng., University of Sydney, Sydney, NSW, 2006, Australia
Abstract:Acetone droplet characteristics in reacting and non-reacting turbulent flow are predicted and compared to experimental data. Investigations are conducted to study the effects of surrounding environment properties on the velocities, dispersion, and evaporation of a relatively volatile spray fuel that featured a wide range of Stokes numbers. The simulations are performed in the framework of Reynolds Averaged Navier Stokes equations along with the Eulerian-Lagrangian approach in which 12 different classes of the dispersed phase. The phase transition is modeled by the Langmuir-Knudsen law that accounts for non equilibrium effects based on a consistent determination of the molar mass fraction on the droplet surfaces. For the droplet dispersion, the Markov sequence model is improved by adding a correction drift term to the fluid fluctuation velocity at the parcel position along the droplet trajectory. This correction term aimed at accounting for the non-homogeneity effects in the turbulent flow. The combustion is captured using the Bray-Moss-Libby model that is extended to account for the partially premixed spray combustion. The chemistry is described with the flamelet model using a recent detailed reaction mechanism that involves 84 species and 409 reactions for which the Lewis number is not set to the unity. Mean droplet velocities for reacting and non-reacting test cases are compared with experimental data. Good agreement is observed. The spray is interacting with the nozzle edge developing new classes and relatively dense region. Hence the RMS-velocities close to the nozzle exit plan demonstrate discrepancies. The droplets group combustion effect is found to be important in the modeling of the burning velocity which influences the flame propagation. Reasonable agreements between the numerical and the experimental results are also observed in the spray flux and temperature profiles.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号