首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Kinetics and mechanism of the oxidation of guanosine derivatives by Pt(IV) complexes
Authors:Choi Sunhee  Vastag Livia  Leung Chin-Hin  Beard Adam M  Knowles Darcy E  Larrabee James A
Institution:Department of Chemistry and Biochemistry, Middlebury College, Middlebury, Vermont 05753, USA. choi@middlebury.edu
Abstract:The kinetics of redox reactions of the PtIV complexes trans-Pt(d,l)(1,2-(NH2)2C6H10)Cl4 (PtIVCl4(dach)]) and Pt(NH2CH2CH2NH2)Cl4 (PtIVCl4(en)]) with 5'- and 3'-dGMP (G) have been studied. These redox reactions involve substitution followed by an inner-sphere electron transfer. The substitution is catalyzed by PtII and follows the classic Basolo-Pearson PtII-catalyzed PtIV-substitution mechanism. We found that the substitutution rates depend on the steric hindrance of PtII, G, and PtIV with the least sterically hindered PtII complex catalyzing at the highest rate. 3'-dGMP undergoes substitution faster than 5'-dGMP, and PtIVCl4(en)] substitutes faster than PtIVCl4(dach)]. The enthalpies of activation of the substitution, DeltaH double dagger s, of 3'-dGMP is only 70% greater than that of 5'-dGMP (50.4 vs 30.7 kJ mol(-1)), but the entropy of activation of the substitution, DeltaS double dagger s, of 3'-dGMP is much greater than that of 5'-dGMP (-59.4 vs -129.5 J K(-1) mol(-1)), indicating that steric hindrance plays a major role in the substitution. The enthalpy of activation of electron transfer, DeltaH double dagger e, of 3'-dGMP is smaller than that of 5'-dGMP (88.8 vs 137.8 kJ mol(-1)). The entropy of activation of electron transfer, DeltaS double dagger e, of 3'-dGMP is negative, but that of 5'-dGMP is positive (-27.8 vs +128.8 J K-1 mol-1). The results indicate that 5'-hydroxo has less rotational barrier than 5'-phosphate, but it is geometrically unfavorable for internal electron transfer. The electron-transfer rate also depends on the reduction potential of PtIV. Because of its higher reduction potential, PtIVCl4(dach)] has a faster electron transfer than PtIVCl4(en)].
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号