首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Influence of organic coatings on pyrene ozonolysis at the air-aqueous interface
Authors:Henderson Elyse A  Donaldson D J
Institution:Department of Chemistry, University of Toronto, 80 St. George St., Toronto, Ontario, Canada M5S 3H6.
Abstract:Glancing angle laser-induced fluorescence was used to investigate the effects of organic monolayer coatings on the ozonation kinetics of pyrene at the air-aqueous interface. Fluorescence spectra show that both 1-octanol and octanoic acid coatings give rise to similar decreased polarity at the interface relative to the uncoated surface and show a similar propensity of pyrene to partition to the interface. Ozonation kinetics follow a Langmuir-Hinshelwood mechanism, indicating a surface reaction. At high ozone concentrations, a monolayer coating of 1-octanol enhances the rate relative to the uncoated surface and a coating of octanoic acid decreases the rate. Pyrene fluorescence is most efficiently quenched by ozone in the presence of a 1-octanol coating, followed by the uncoated surface, and least efficiently quenched by ozone in the presence of octanoic acid. In agreement with earlier work, a significant photoenhancement of the ozonation is observed at the uncoated surface; however, no enhancement is observed with monolayer coatings of either organic. Quantum chemical calculations indicate a reasonable binding of ozone by the carboxylic acid group (in both its dissociated and undissociated forms). We suggest that the inhibition of the water surface reaction by a monolayer of octanoic acid is due to the sequestration of ozone by the carboxylic acid group.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号