首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Fundamentals and application of ordered molecular assemblies to affinity biosensing
Authors:Matharu Zimple  Bandodkar Amay Jairaj  Gupta Vinay  Malhotra Bansi Dhar
Institution:Department of Science and Technology Centre on Biomolecular Electronics, Biomedical Instrumentation Section, Materials Physics & Engineering Division, National Physical Laboratory (Council of Scientific & Industrial Research) Dr K. S. Krishnan Marg, New Delhi-110012, India.
Abstract:Organization of biomolecules in two/three dimensional assemblies has recently aroused much interest in nanobiotechnology. In this context, the development of techniques for controlling spatial arrangement and orientation of the desired molecules to generate highly-ordered nanostructures in the form of a mono/multi layer is considered highly significant. The studies of monolayer films to date have focused on three distinct methods of preparation: (i) the Langmuir-Blodgett (LB) technique, involving the transfer of a monolayer assembled at the gas-liquid interface; (ii) self-assembly at the liquid-solid interface, based on spontaneous adsorption of desired molecules from a solution directly onto a solid surface; and (iii) Layer-by-layer (LBL) self-assembly at a liquid-solid interface, based on inter-layer electrostatic attractions for fabrication of multilayers. A variety of monolayers have been utilized to fabricate biomolecular electronic devices including biosensors. The composition of a monolayer based matrix has been found to influence the activity(ies) of biomolecule(s). We present comprehensive and critical analysis of ordered molecular assemblies formed by LB and self-assembly with potential applications to affinity biosensing. This critical review on fundamentals and application of ordered molecular assemblies to affinity biosensing is likely to benefit researchers working in this as well as related fields of research (401 references).
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号