首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Interaction of zinc oxide clusters with molecules related to the sulfur vulcanization of polyolefins ("rubber")
Authors:Steudel Ralf  Steudel Yana
Institution:Institut für Chemie, Technische Universit?t Berlin, Sekr. C2, 10623 Berlin, Germany. steudel@sulfur-research.de
Abstract:The vulcanization of rubber by sulfur is a large‐scale industrial process that is only poorly understood, especially the role of zinc oxide, which is added as an activator. We used the highly symmetrical cluster Zn4O4 (Td) as a model species to study the thermodynamics of the initial interaction of various vulcanization‐related molecules with ZnO by DFT methods, mostly at the B3LYP/6‐31+G* level. The interaction energy of Lewis bases with Zn4O4 increases in the following order: CO62H43H62S2<1,4‐C5H82O2S3N?CH3COO?. The corresponding binding energies range from ?57 to ?262 kJ mol?1. However, Brønsted acids react with the Zn4O4 cluster with proton transfer from the ligand molecule to one of the oxygen atoms of Zn4O4, and these reactions are all strongly exothermic binding energies kJ mol?1] in parentheses: H2O (?183), MeOH (?171), H2S (?245), MeSH (?230), C3H6 (?121), and CH3COOH (?255)]. The important vulcanization accelerator mercaptobenzothiazole (C7H5NS2, MBT) containing several donor sites reacts with the Zn4O4 cluster with proton transfer from the NH group to one of the oxygen atoms of ZnO, and in addition the exocyclic thiono sulfur atom and the nitrogen atom coordinate to one and the same zinc atom, resulting in a binding energy of ?247 kJ mol?1. A second isomer of (MBT)Zn4O4] with a strong O? H???N hydrogen bond rather than a Zn? N bond is only slightly less stable (binding energy ?243 kJ mol?1). The NH form of free MBT is 36 kJ mol?1 more stable than the tautomeric SH form, while the sulfurized MBT derivative benzothiazolyl hydrodisulfide C7H5NS3 (BtSSH) is most stable with the connectivity >CSSH.
Keywords:density functional calculations  rubber  sulfur  vulcanization  zinc
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号