首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Electrical and interfacial properties of Au/P3HT:PCBM/n-Si Schottky barrier diodes at room temperature
Institution:1. Department of Materials Science and Engineering, Clemson University, Clemson, SC 29634, USA;2. Linz Institute for Organic Solar Cells (LIOS), Physical Chemistry, Johannes Kepler University, Linz 4040, Austria;3. Institute of Organic Chemistry, National Academy of Sciences of Ukraine, 5 Murmanskaya Str., Kiev 02094, Ukraine
Abstract:In this study, a gold/poly(3-hexylthiophene):6,6]-phenyl C61 butyric acid methyl ester/n-type silicon (Au/P3HT:PCBM/n-Si) metal-polymer-semiconductor (MPS) Schottky barrier diode (SBD) was fabricated. To accomplish this, a spin-coating system and a thermal evaporation were used for preparation of a P3HT/PCBM layer system and for deposition of metal contacts, respectively. The forward- and reverse-bias current–voltage (IV) characteristics of the MPS SBD at room temperature were studied to investigate its main electrical parameters such as ideality factor (n), barrier height (ΦB), series resistance (Rs), shunt resistance (Rsh), and density of interface states (Nss). The IV characteristics have nonlinear behavior due to the effect of Rs, resulting in an n value (3.09) larger than unity. Additionally, it was found that n, ΦB, Rs, Rsh, and Nss have strong correlation with the applied bias. All results suggest that the P3HT/PCBM interfacial organic layer affects the Au/P3HT:PCBM/n-Si MPS SBD, and that Rs and Nss are the main electrical parameters that affect the Au/P3HT:PCBM/n-Si MPS SBD. Furthermore, a lower Nss compared with that of other types of MPS SBDs in the literature was achieved by using the P3HT/PCBM layer. This lowering shows that high-quality electronic and optoelectronic devices may be fabricated by using the Au/P3HT:PCBM/n-Si MPS SBD.
Keywords:P3HT/PCBM organic-blend layer  Schottky barrier diodes
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号