首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A microtubular all CNT gas diffusion electrode
Institution:1. RWTH Aachen University, Aachener Verfahrentechnik-Chemical Process Engineering, Turmstr. 46, 52064, Aachen, Germany;2. DWI – Liebniz Institute for Interactive Materials, Forckenbeckstr. 50, 52056 Aachen, Germany
Abstract:We report a microtubular gas diffusion electrodes made of multi-walled carbon nanotubes (MWCNT). The electrodes were prepared by inside-out cake filtration of an aqueous MWCNT suspension onto a microfiltration hollow fiber (HF) membrane, followed by washing out the surfactant, drying and removal of the all CNT microtube from the HF membrane. Length, outer diameter, and wall thickness of the tubular electrodes are: up to 44 cm, ~ 1.7 mm and 275 μm, respectively. The BET surface area is 200 m2/g with a porosity of 48–67% and an electrical conductivity of ~ 20 S/cm. Application of this microtubular Gas Diffusion Electrodes (GDE) was studied for the oxygen reduction reaction (ORR) in divided and undivided electrochemical cells. Oxygen supply into the lumen of the tubular electrodes resulted in much higher current densities for ORR than in experiments where the electrolyte was saturated by bubbling with pure oxygen. Within the 0.25–1.0 bar pressure (gauge) region, higher ORR rates were achieved at lower pressure. We also show that H2O2 production is possible using the new GDE. We propose to use such novel electrodes for the fabrication of tubular electrochemical reactors, e.g. fuel cells, H2O2 generators, CO2 reduction and other processes that involve GDE application.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号