首页 | 本学科首页   官方微博 | 高级检索  
     


Numerical investigation of the effect of dual frequency sonication on stable bubble dynamics
Affiliation:Laboratory of Environmental Engineering, Department of Process Engineering, Faculty of Engineering, Badji Mokhtar – Annaba University, P.O. Box 12, 23000 Annaba, Algeria
Abstract:A computational study aiming to simulate an oxygen single acoustic bubble oscillation under a dual-frequency sonication was presented in this paper. The non-linear response of the bubble to the superposition of two fields of ultrasonic waves was investigated through dynamics parameters, collapse ratios and average velocities. The main goal of this analyze is to link the properties of the wave resulting from the dual-frequency excitation to the dynamics behavior of the bubble. The obtained results prove that, in contrast with the mono-frequency, coupling a wave to lower frequencies enhances the collapse duration and raises the compression ratio in the case of 35 kHz, while associating any of the studied waves to a higher frequency elevates the number of bubble oscillations during a time interval as compared to mono-frequency. The total sonochemical production has been investigated in accordance with the dynamics results, as well as the proportions of the three predominant free radicals, that show a dependency on the value of the basic frequency.
Keywords:Acoustic cavitation  Stable oscillation  Dual frequency  Dynamics  Collapse  Temperature
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号