首页 | 本学科首页   官方微博 | 高级检索  
     


Radio-frequency muon spin resonance (RFμSR) experiments on condensed matter
Authors:R. Scheuermann  L. Schimmele  J. Schmidl  J. Major  D. Herlach  C. A. Scott
Affiliation:1. Institut für Theoretische und Angewandte Physik, Universit?t Stuttgart, Stuttgart, Germany
2. Max-Planck-Institut für Metallforschung, Heisenbergstra?e 1, D-70569, Stuttgart, Germany
3. Paul Scherrer Institut, Villigen, Switzerland
4. Rutherford Appleton Laboratory, Chilton, UK
Abstract:In this paper we present an overview of the radio-frequency muon spin resonance (RFμSR) technique, an analogue to continuous-wave NMR, and an introduction to time-integral (TI) and time-differential (TD) RFμSR on muons in diamagnetic or in paramagnetic environments. The general form of the resonance line for TI-RFμSR as well as the expression for the time-dependence of the longitudinal muon spin polarization at resonance are given. Since RFμSR does not require phase coherence of the muon spin ensemble, this technique allows us to investigate muon species that are generated by transitions from, or in the course of reactions of, a precursor muon species even if in transverse-field (TF) μSR measurements the signal is lost due to dephasing. This ability of RFμSR is clearly demonstrated by measurements on doped Si. In this example, at low temperatures, a very pronounced signal from a muon species in diamagnetic environment has been found in RFμSR measurements, whereas in TFμSR experiments only a very small signal from muons in diamagnetic environment could be detected and a large fraction of the implanted muons escaped detection. These findings could be interpreted in terms of the delayed formation of a diamagnetic muonium-dopant complex, and, due to the large diamagnetic RFμSR signal, the RFμSR technique is a unique tool to study how the variation of parameters and experimental conditions such as illumination affects formation and behavior of these complexes. First results obtained on illuminated boron doped Si are reported. However, as illustrated by the example of experiments on the muonated radical in solid C60, results from conventional TI-RFμSR cannot always be interpreted unambiguously since different parameters, namely the fraction of muons forming the investigated muon species, the longitudinal and the transverse relaxation rates, have similar effects on height and shape of the RFμSR resonance line. These ambiguities, however, may be resolved by collecting time-differential data. With this extension RFμSR becomes a very powerful complementary method to TFμSR in the studies of dynamic effects.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号