首页 | 本学科首页   官方微博 | 高级检索  
     

用BP神经网络模型预测Ni-Al2O3复合涂层Al2O3粒子复合量研究
引用本文:李源彬,岳文喜. 用BP神经网络模型预测Ni-Al2O3复合涂层Al2O3粒子复合量研究[J]. 人工晶体学报, 2017, 46(8): 1649-1652. DOI: 10.3969/j.issn.1000-985X.2017.08.040
作者姓名:李源彬  岳文喜
作者单位:四川农业大学信息工程学院,雅安,625014;四川工商职业技术学院,成都,611830
基金项目:国家自然科学基金(51474072)
摘    要:运用人工神经网络技术建立一个结构为4×9×1型的BP神经网络模型,用该模型对Ni-Al2O3复合涂层中Al2O3复合量进行预测研究,并用XRD衍射仪和原子力显微镜(AFM)对Ni-Al2O3复合涂层的Al2O3复合量和立体形貌进行分析.结果表明,当隐含层数为9个时,BP神经网络的均方根误差最小(1.13;),BP神经网络的拟合相似度R=0.99937,这表明BP神经网络模型能够较好的预测涂层Al2O3复合量.当占空比60;、阴极电流密度4 A/dm2、pH值4、镀液温度55 ℃时,Ni-Al2O3复合涂层结构密实,结晶细致.

关 键 词:BP神经网络模型  Ni-Al2O3复合涂层  Al2O3复合量  预测,

Study on the Al2O3 Contents in Ni-Al2O3 Composite Coatings Predicted by Using BP Neural Network Model
LI Yuan-bin,YUE Wen-xi. Study on the Al2O3 Contents in Ni-Al2O3 Composite Coatings Predicted by Using BP Neural Network Model[J]. Journal of Synthetic Crystals, 2017, 46(8): 1649-1652. DOI: 10.3969/j.issn.1000-985X.2017.08.040
Authors:LI Yuan-bin  YUE Wen-xi
Abstract:A 4×9×1 type of BP neural network model was set up to predict the Al2O3 contents in Ni-Al2O3 composite coatings by using the artificial neural network technology.The content and 3D surface pattern were analyzed by using XRD diffraction and atomic force microscopy (AFM).The results show that when the number of hidden layers is 9, the minimum root mean square error is 1.13%, the fitting similarity R is about 0.99937, which indicates that the BP neural network model can accurately predict the Al2O3 contents.When the duty ratio is 60%, the cathode current density of 4 A/dm2, pH=4, the bath temperature of 55 ℃, Ni-Al2O3 composite coating has a dense structure, and the crystalline is fine.
Keywords:BP neural network model  Ni-Al2O3 composite coating  Al2O3 content  prediction
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《人工晶体学报》浏览原始摘要信息
点击此处可从《人工晶体学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号