首页 | 本学科首页   官方微博 | 高级检索  
     


Robust decoupling techniques to extend quantum coherence in diamond
Authors:Ryan C A  Hodges J S  Cory D G
Affiliation:Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
Abstract:We experimentally demonstrate over 2 orders of magnitude increase in the room-temperature coherence time of nitrogen-vacancy centers in diamond by implementing decoupling techniques. We show that equal pulse spacing decoupling performs just as well as nonperiodic Uhrig decoupling and also allows us to take advantage of revivals in the echo to explore the longest coherence times. At short times, we can extend the coherence of particular quantum states out from T2*=2.7 μs out to an effective T2>340 μs. For preserving arbitrary states we show the experimental importance of using pulse sequences that compensate the imperfections of individual pulses for all input states through judicious choice of the phase of the pulses. We use these compensated sequences to enhance the echo revivals and show a coherence time of over 1.6 ms in ultrapure natural abundance 13C diamond.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号