首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Dynamics change of phoborhodopsin and transducer by activation: study using D75N mutant of the receptor by site-directed solid-state 13C NMR
Authors:Kawamura Izuru  Yoshida Hideaki  Ikeda Yoichi  Yamaguchi Satoru  Tuzi Satoru  Saitô Hazime  Kamo Naoki  Naito Akira
Institution:Graduate School of Engineering, Yokohama National University, Hodogaya-ku, Yokohama, Japan.
Abstract:Pharaonis phoborhodopsin (ppR or sensory rhodopsin II) is a negative phototaxis receptor of Natronomonas pharaonis, and forms a complex, which transmits the photosignal into cytoplasm, with its cognate transducer (pHtrII). We examined a possible local dynamics change of ppR and its D75N mutant complexed with pHtrII, using solid-state (13)C NMR of 3-(13)C]Ala- and 1-(13)C]Val-labeled preparations. We distinguished Ala C(beta) (13)C signals of relatively static stem (Ala221) in the C-terminus of the receptors from those of flexible tip (Ala228, 234, 236 and 238), utilizing a mutant with truncated C-terminus. The local fluctuation frequency at the C-terminal tip was appreciably decreased when ppR was bound to pHtrII, while it was increased when D75N, that mimics the signaling state because of disrupted salt bridge between C and G helices prerequisite for the signal transfer, was bound to pHtrII. This signal change may be considered with the larger dissociation constant of the complex between pHtrII and M-state of ppR. At the same time, it turned out that fluctuation frequency of cytoplasmic portion of pHtrII is lowered when ppR is replaced by D75N in the complex with pHtrII. This means that the C-terminal tip partly participates in binding with the linker region of pHtrII in the dark, but this portion might be released at the signaling state leading to mutual association of the two transducers in the cytoplasmic regions within the ppR/pHtrII complex.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号