首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Hydroxypyridinechromene and Pyridinechalcone: Two Coupled Photochromic Systems
Authors:Yoann Leydet Dr  A Jorge Parola Dr  Fernando Pina Prof
Institution:Departamento de Química, REQUIMTE, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa (Portugal), Fax: (+35)?121‐294‐8550
Abstract:Substitution of the phenyl group in 2‐hydroxychalcones by a 4‐pyridine unit dramatically changes the network of chemical reactions of this compound: trans‐chalcone‐type ( Ct ), cis‐chalcone‐type ( Cc ), and a hemiketal (hydroxy‐4‐pyridinechromene) ( B ) and their protonated forms are formed, but the presence of a flavylium‐type cation could not be detected even at very acidic pH values. Moreover, whereas in 2‐phenyl‐2‐benzopyrylium compounds B and Cc are generally elusive species whose kinetic processes in aqueous solutions occur on the sub‐second timescale, in the present compound these species equilibrate on a timescale four orders of magnitude lower. Complete characterization of the equilibrium and kinetics of the reaction network could thus be achieved by 1H NMR spectroscopy and UV/Vis spectrophotometry. The network of chemical reactions exhibits cistrans photoisomerization, as well as photochromism between the hemiketal and the chalcone‐type species. The irradiation of Ct in MeOH/H2O (1:1) at 365 nm produces B almost quantitatively through two consecutive photochemical reactions: Ct → Cc photoisomerization followed by Cc → B photo ring closure with a global quantum yield of 0.02. On the other hand, irradiation of B at 254 nm leads to a photostationary state composed by 80 % Ct and 20 % B , with a quantum yield of 0.21.
Keywords:chromenes  isomerization  multistate systems  photochromism  tautomerism
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号