首页 | 本学科首页   官方微博 | 高级检索  
     


Redox Reaction of the Pd0 Complex Bearing the Trost Ligand with meso‐Cycloalkene‐1,4‐biscarbonates Leading to a Diamidato PdII Complex and 1,3‐Cycloalkadienes: Enantioselective Desymmetrization Versus Catalyst Deactivation
Authors:Vasily N. Tsarev Dr.  Dennis Wolters Dipl.‐Chem.  Hans‐Joachim Gais Prof. Dr.
Affiliation:Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen (Germany), Fax: (+49)?241‐8094710
Abstract:The Pd0 complex 1 that bears the Trost ligand 2 undergoes a facile redox reaction with 1,4‐biscarbonates 5 b – d and rac‐ 22 under formation of the diamidato–PdII complex 7 and the corresponding 1,3‐cycloalkadienes 8 b – d . The redox deactivation of complex 1 was the dominating pathway in the reaction of 5 b – d with HCO3? at room temperature. However, at 0 °C the six‐membered biscarbonate 5 b , catalytic amounts of complex 1 , and HCO3? mainly reacted in an allylic alkylation, which led to a highly selective desymmetrization of the substrate and gave alcohol 6 b with ≥99 % ee in 66 % yield. An increase of the catalyst loading in the reaction of 5 b with 1 and HCO3? afforded the bicyclic carbonate 12 b (96 % ee, 92 %). Formation of carbonate 12 b involves two consecutive inter‐ and intramolecular substitution reactions of the π‐allyl–PdII complexes 16 b and 18 b , respectively, with O‐nucleophiles and presumably proceeds through the hydrogen carbonate 17 b as key intermediate. The intermediate formation of 17 b is also indicated by the conversion of alcohol rac‐ 6 b to carbonate 12 b upon treatment with HCO3? and 1 . The Pd0‐catalyzed desymmetrization of 5 b with formation of 12 b and its hydrolysis allow an efficient enantioselective synthesis of diol 13 b . The reaction of the seven‐membered biscarbonate 5 c with ent‐ 1 and HCO3? afforded carbonate ent‐ 12 c (99 % ee, 39 %). The Pd0 complex 1 is stable in solution and suffers no intramolecular redox reaction with formation of complex 7 and dihydrogen as recently claimed for the similar Pd0 complex 9 . Instead, complex 1 is rapidly oxidized by dioxygen to give the stable PdII complex 7 . Thus, formation of the PdII complex 10 from 9 was most likely due to an oxidation by dioxygen. Oxidative workup (air) of the reaction mixture stemming from the desymmetrization of 5 c catalyzed by 1 gave the PdII complex 7 in high yield besides carbonate 12 c .
Keywords:alkylation  oxidation  palladium  redox chemistry  Trost ligand
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号