首页 | 本学科首页   官方微博 | 高级检索  
     检索      


On the Electronic Structure of NiII Complexes That Feature Chelating Bisguanidine Ligands
Authors:Pascal Roquette Dipl‐Chem  Astrid Maronna Dipl‐Chem  Anastasia Peters Dipl‐Chem  Elisabeth Kaifer Dr  Hans‐Jörg Himmel Prof?Dr?Dr  Christoph Hauf Dipl‐Phys  Verena Herz Dipl‐Phys  Ernst‐Wilhelm Scheidt Dr  Wolfgang Scherer Prof?Dr
Institution:1. Anorganisch‐Chemisches Institut, Ruprecht‐Karls‐Universit?t Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg (Germany), Fax: (+49)?6221‐545707;2. Institut für Physik, Universit?t Augsburg, 86135 Augsburg (Germany), Fax: (+49)?821‐5983227
Abstract:In this work we report on the syntheses and properties of several new Ni complexes featuring the chelating bisguanidines bis(tetramethylguanidino)benzene (btmgb), bis(tetramethylguanidino)naphthalene (btmgn), and bis(tetramethylguanidino)biphenyl (btmgbp) as ligands. All complexes were structurally characterized by single‐crystal X‐ray diffraction and quantum chemical calculations. A detailed inspection of the magnetic susceptibility of (btmgb)NiX2] and (btmgbp)NiX2] (X=Cl, Br) revealed a linear temperature dependence of χ?1(T) above 50 K, which was in agreement with a Curie–Weiss‐type behavior and a triplet ground state. Below approximately 25 K, however, magnetic susceptibility studies of the paramagnetic d8 Ni complexes revealed the presence of a significant zero‐field splitting (ZFS) that results from spin–orbit mixing of excited states into the triplet ground state. The electronic consequences that might arise from the mixing of states as well as from a possible non‐innocent behavior of the ligand have been explored by an experimental charge density study of (btmgb)NiCl2] at low temperatures (7 K). Here, the presence of ZFS was identified as one potential reason for the flat ?Cl‐Ni‐Cl deformation potential and the distinct differences between the ?X‐Ni‐X valence angles observed by experiment and predicted by DFT. An analysis of the topology of the experimentally and theoretically derived electron‐density distributions of (btmgb)NiCl2] confirmed the strong donor character of the bisguanidine ligand but clearly ruled out any significant non‐innocent ligand (NIL) behavior. Hence, (btmgb)NiCl2] provides an experimental reference system to study the mixing of certain excited states into the ground state unbiased from any competing NIL behavior.
Keywords:chelates  coordination compounds  electron density  guanidines  nickel
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号