首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Preferential interaction between DNA and small ions in mixed-size counterion systems: Monte Carlo simulation and density functional study
Authors:Wang Ke  Yu Yang-Xin  Gao Guang-Hua  Luo Guang-Sheng
Institution:Department of Chemical Engineering, Tsinghua University, Beijing 100084, People's Republic of China.
Abstract:Competitive binding between counterions around DNA molecule is characterized using the preferential interaction coefficient of individual ion in single and mixed electrolyte solutions. The canonical Monte Carlo (MC) simulation, nonlinear Poisson-Boltzmann (PB) equation, and density functional theory (DFT) proposed in our previous work Wang, Yu, Gao, and Luo, J. Chem. Phys. 123, 234904 (2005)] are utilized to calculate the preferential interaction coefficients. The MC simulations and theoretical results show that for single electrolyte around DNA, the preferential interaction coefficient of electrolyte decreases as the cation size is increased, indicating that the larger cation has less accumulation ability in the vicinity of DNA. For the mixed electrolyte solution, it is found that cation diameter has a significant effect on the competitive ability while anion diameter has a negligible effect. It proves that the preferential interaction coefficients of all ions decrease as the total ionic concentration is increased. The DFT generally has better performance than the PB equation does when compared to the MC simulation data. The DFT behaves quite well for the real ionic solutions such as the KCl-NaCl-H2O, NaCl-CaCl2-H2O, and CaCl2-MgCl2-H2O systems.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号