首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Statistical temperature molecular dynamics: application to coarse-grained beta-barrel-forming protein models
Authors:Kim Jaegil  Straub John E  Keyes Thomas
Institution:Department of Chemistry, Boston University, Boston, Massachusetts 02215, USA. jaegil@bu.edu
Abstract:Recently the authors proposed a novel sampling algorithm, "statistical temperature molecular dynamics" (STMD) J. Kim et al., Phys. Rev. Lett. 97, 050601 (2006)], which combines ingredients of multicanonical molecular dynamics and Wang-Landau sampling. Exploiting the relation between the statistical temperature and the density of states, STMD generates a flat energy distribution and efficient sampling with a dynamic update of the statistical temperature, transforming an initial constant estimate to the true statistical temperature T(U), with U being the potential energy. Here, the performance of STMD is examined in the Lennard-Jones fluid with diverse simulation conditions, and in the coarse-grained, off-lattice BLN 46-mer and 69-mer protein models, exhibiting rugged potential energy landscapes with a high degree of frustration. STMD simulations combined with inherent structure (IS) analysis allow an accurate determination of protein thermodynamics down to very low temperatures, overcoming quasiergodicity, and illuminate the transitions occurring in folding in terms of the energy landscape. It is found that a thermodynamic signature of folding is significantly suppressed by accurate sampling, due to an incoherent contribution from low-lying non-native IS in multifunneled landscapes. It is also shown that preferred accessibility to such IS during the collapse transition is intimately related to misfolding or poor foldability.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号