首页 | 本学科首页   官方微博 | 高级检索  
     


Theoretical study of electron transfer in uranyl(VI)–uranyl(V) complexes in solution
Authors:Shen‐Zhuang Lu
Affiliation:Department of Chemistry, College of Chemistry and Life Science, Leshan Teachers College, Leshan, Sichuan 614000, People's Republic of China
Abstract:The rates of the electron self‐exchange between uranyl(VI) and uranyl(V) complexes in solution have been investigated in detail with quantum chemical methods. The calculations have shown that the bond length of U? Oyl is elongated by 0.1 Å when the extra electron is localized on the sites. The diabatic potential surfaces are obtained. The inner reorganization energies are 212.6 and 226.8 kJ mol?1 for hydroxide and fluoride bridge systems, respectively. The solvent reorganization energies are 28.12 and 31.60 kJ mol?1 for hydroxide and fluoride bridge systems, respectively. The nuclear frequency factors are 3.17 × 1013 and 3.12 × 1013 s?1 for hydroxide and fluoride bridge systems, respectively. The electronic coupling matrix elements are 1.89 and 4.06 kJ mol?1 for hydroxide and fluoride bridge systems, respectively. The electron‐transfer rates of our calculations are 12.95 and 0.819 M?1 s?1 for hydroxide and fluoride bridge systems, respectively. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010
Keywords:electron transfer  electron‐transfer matrix elements  electron‐transfer rate
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号