首页 | 本学科首页   官方微博 | 高级检索  
     检索      


An injection method for measuring the carbon isotope content of soil carbon dioxide and soil respiration with a tunable diode laser absorption spectrometer
Authors:Andrew B Moyes  Andrew J Schauer  Rolf T W Siegwolf  David R Bowling
Institution:1. Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT 84112, USA;2. Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
Abstract:We present a novel technique in which the carbon isotope ratio (δ13C) of soil CO2 is measured from small gas samples (<5 mL) injected into a stream of CO2‐free air flowing into a tunable diode laser absorption spectrometer (TDL). This new method extends the dynamic range of the TDL to measure CO2 mole fractions ranging from ambient to pure CO2, reduces the volume of sample required to a few mL, and does not require field deployment of the instrument. The measurement precision of samples stored for up to 60 days was 0.23‰. The new TDL method was applied with a simple gas well sampling technique to obtain and measure gas samples from shallow soil depth increments for CO2 mole fraction and δ13C analysis, and subsequent determination of the δ13C of soil‐respired CO2. The method was tested using an artificial soil system containing a controlled CO2 source and compared with an independent method using the TDL and an open soil chamber. The profile and chamber estimates of δ13C of an artificially produced CO2 flux were consistent and converged to the δ13C of the CO2 source at steady state, indicating the accuracy of both methods under controlled conditions. The new TDL method, in which a small pulse of sample is measured on a carrier gas stream, is analogous for the TDL technique to the development of continuous‐flow configurations for isotope ratio mass spectrometry. While the applications presented here are focused on soil CO2, this new TDL method could be applied in a number of situations requiring measurement of δ13C of CO2 in small gas samples with ambient to high CO2 mole fractions. Copyright © 2010 John Wiley & Sons, Ltd.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号